首页> 外文OA文献 >Characteristics of turbulent heat transfer in an annulus at supercritical pressure
【2h】

Characteristics of turbulent heat transfer in an annulus at supercritical pressure

机译:环空中超临界压力下的湍流传热特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heat transfer to fluids at supercritical pressure is different from heat transfer at lower pressures due to strong variations of the thermophysical properties with the temperature. We present and analyze results of direct numerical simulations of heat transfer to turbulent CO2 at 8 MPa in an annulus. Periodic streamwise conditions are imposed so that mean streamwise acceleration due to variations in the density does not occur. The inner wall of the annulus is kept at a temperature of 323 K, while the outer wall is kept at a temperature of 303 K. The pseudocritical temperature Tpc=307.7 K, which is the temperature where the thermophysical properties vary the most, can be found close to the inner wall. This work is a continuation of an earlier study, in which turbulence attenuation due to the variable thermophysical properties of a fluid at supercritical pressure was studied. In the current work, the direct effects of variations in the specific heat capacity, thermal diffusivity, density, and the molecular Prandtl number on heat transfer are investigated using different techniques. Variations in the specific heat capacity cause significant differences between the mean nondimensionalized temperature and enthalpy profiles. Compared to the enthalpy fluctuations, temperature fluctuations are enhanced in regions with low specific heat capacity and diminished in regions with a large specific heat capacity. The thermal diffusivity causes local changes to the mean enthalpy gradient, which in turn affects molecular conduction of thermal energy. The turbulent heat flux is directly affected by the density, but it is also affected by the mean molecular Prandtl number and attenuated or enhanced turbulent motions. In general, enthalpy fluctuations are enhanced in regions with a large mean molecular Prandtl number, which enhances the turbulent heat flux. While analyzing the Nusselt numbers under different conditions it is found that heat transfer deterioration or enhancement can occur without streamwise acceleration or mixed convection conditions. Finally, through a combination of a relation between the Nusselt number and the radial heat fluxes, a quadrant analysis of the turbulent heat flux, and conditional averaging of the heat flux quadrants, it is shown that heat transfer from a heated surface depends on the density and the molecular Prandtl number of both hot fluid moving away from a heated surface as well as the thermophysical properties of relatively cold fluid moving towards it.
机译:由于热物理性质随温度的强烈变化,在超临界压力下向流体的传热与在较低压力下的传热不同。我们提出并分析了环空中8 MPa下传热到湍流CO2的直接数值模拟的结果。施加周期性的沿流条件,使得不会发生由于密度变化而引起的平均沿流加速度。环的内壁保持在323 K的温度,而外壁保持在303 K的温度。假临界温度Tpc = 307.7 K,这是热物理性质变化最大的温度。发现在内壁附近。这项工作是早期研究的延续,其中研究了由于流体在超临界压力下的可变热物理特性而引起的湍流衰减。在当前的工作中,使用不同的技术研究了比热容,热扩散率,密度和分子普朗特数的变化对传热的直接影响。比热容的变化导致平均无量纲温度和焓分布之间的显着差异。与焓波动相比,在比热容低的区域温度波动增加,而在比热容大的区域温度波动减小。热扩散率导致平均焓梯度发生局部变化,进而影响热能的分子传导。湍流的热通量直接受密度的影响,但也受平均分子普朗特数和衰减或增强的湍流运动的影响。通常,在具有大的平均分子普朗特数的区域中,焓的波动会增加,这会增加湍流的热通量。在分析不同条件下的Nusselt数时,发现在没有沿流加速或混合对流条件下,传热可能会变差或增强。最后,通过将努塞尔数和径向热通量之间的关系,湍流热流的象限分析以及热流象限的条件平均相结合,可以证明从受热表面传热取决于密度以及从加热表面移走的热流体的分子普朗特数以及向其移动的相对冷的流体的热物理性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号